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The past decade has witnessed an explosive increase in the 
availability of new psychoactive substances (NPSs), also 
known as ‘designer drugs’ or ‘legal highs’1,2. NPSs are typi-

cally created by slight modifications to the chemical structure of 
existing drugs of abuse, generating derivatives that circumvent 
drug control legislation while retaining their psychoactive prop-
erties3. Examples of well-known NPSs include synthetic canna-
binoids (‘spice’), synthetic cathinones (‘bath salts’), psychedelic 
tryptamines and phenethylamines and, more recently, synthetic 
opioids4.

NPSs are synthesized by clandestine chemists, who mine the 
scientific and patent literature to identify compounds targeting the 
same receptors as existing psychoactive drugs5. The ingenuity of 
these chemists and the lack of controls on the distribution of these 
compounds mean that new NPSs are continuously entering the 
‘grey market’, at a rate of roughly one compound per week1. At the 
same time, established drugs may rapidly disappear from the mar-
ket in response to legislation6. The pharmacology and toxicology of 
NPSs have not been well characterized, and many have been associ-
ated with life-threatening toxidromes and fatalities7. Patients intoxi-
cated with an NPS thus present a substantial burden to healthcare 
systems1,8,9. This public health burden obliges forensic laboratories 
around the globe to screen for NPSs in law enforcement seizures or 
biological samples. However, the chemical diversity of these sub-
stances, and the fleeting nature of their appearance on the illicit mar-
ket, poses a profound challenge to the detection and identification  

of novel compounds, pitting forensic scientists against clandestine 
chemists in a cat-and-mouse game10.

Identifying a new designer drug within a seizure or biological 
sample is challenging for several reasons. The first is the high degree 
of structural similarity between candidate NPSs, which are often 
analogues from the same medicinal chemistry series11,12. A second 
challenge is the rapid rate at which novel compounds emerge onto 
the grey market, which necessitates the development of new assays 
for previously unknown substances13,14. Assay development requires 
substantial time and effort, and the inherent novelty of NPSs means 
that analytical reference materials are rarely available for NPSs that 
have recently entered the market15.

A number of analytical methods have been developed to over-
come these challenges. Historically, screening was accomplished 
predominantly by immunochemical approaches, but these are lim-
ited by their low sensitivity, inability to provide component-resolved 
drug profiles, and the time and effort required to establish new 
assays16,17. More recently, mass spectrometry (MS) has emerged as 
one of the primary methods for NPS detection and identification18. 
High-resolution MS (HR-MS) can provide highly accurate mass 
measurements for a given analyte, narrowing the list of potential 
candidates and allowing for comparison against a reference data-
base. Tandem MS (MS/MS) provides additional information in the 
form of diagnostic product ions, allowing for higher-confidence 
molecule identification. However, a key shortcoming of MS 
approaches is that, to identify an NPS by its exact mass or tandem 
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mass spectrum, investigators minimally require its chemical struc-
ture to be present in a reference database. This presents an obstacle 
to the identification of new designer drugs that have just emerged 
on the market and whose structures are, by definition, unknown to 
law enforcement or forensic laboratories. Elucidating the complete 
chemical structures of these novel compounds is generally thought 
to require an orthogonal technique—most commonly NMR spec-
troscopy19. However, the lower sensitivity of NMR necessitates 
larger amounts of NPS material as input. In practice, even when 
cryoprobe technology can enhance its sensitivity20, NMR can be 
applied only to law enforcement seizures from which a sufficient 
amount of substance can be made available. For the same reason, 
NMR cannot be applied to screen human tissues in cases of sus-
pected NPS intoxication.

In this Article we present DarkNPS, a deep learning-enabled 
system to automatically elucidate the chemical structures of 
unidentified NPSs using only MS data. Our approach is based on 
the use of a deep generative model of chemical structures. Models 
of this family have attracted intense interest within the fields of 
chemistry and deep learning for their potential to generate mol-
ecules with arbitrary physicochemical or biological properties on 
demand21–25, thereby solving what has been termed the ‘inverse 
design’ problem26. Much of this work has focused on the possibil-
ity of generating ligands that are active against a particular recep-
tor27. Here we seek instead to generate NPS-like molecules that 
match one or more analytically measured properties. We achieve 
this by using strategies adapted to the low-data regime28,29 to learn 
a robust generative model of designer drugs from only ~1,700 
examples15. Sampling from this model allows us to stochastically 
generate new molecules that populate the same chemical space as 
existing designer drugs. We validate DarkNPS using a held-out 
set of 194 NPSs that were received by forensic laboratories after 
our training set was finalized, demonstrating that our model suc-
cessfully anticipated >90% of NPSs that subsequently appeared 
on the illicit market. We then show that the frequency at which 
novel molecules are sampled from the model can be used to sug-
gest the chemical structure most likely to explain an accurate 
mass measurement. Integration of the generated structures with 
MS/MS data further improves the accuracy of structure elucida-
tion. We demonstrate the application of DarkNPS to elucidate the 
structure of a novel designer drug that first appeared in Europe 
in February 2021, and which at the time of writing had not been 
described in the peer-reviewed literature.

Results
A deep generative model of novel psychoactive substances. A 
number of computational tools have been developed to enable the 
automated identification of drugs and their metabolites within 
MS data30. However, all of these tools require a database of known 
chemical structures as input, against which to compare the observed 
MS data. As a result, these tools cannot be used to identify newly 
synthesized designer drugs that are not found in existing databases. 
We reasoned that, by generating a database of novel, NPS-like 
chemical structures, we could automate the identification of entirely 
unknown NPSs. We therefore set out to learn a deep generative 
model of NPS chemical structures, from which we could then sto-
chastically sample novel NPS structures (Fig. 1a,b).

We obtained a training dataset of NPS chemical structures from 
HighResNPS, a database developed to facilitate NPS screening using 
MS15. Contributors from dozens of forensic laboratories around 
the world submit data to HighResNPS when new substances are 
detected in biological samples or law enforcement seizures, mak-
ing this database arguably the most up-to-date and comprehensive 
resource of NPS structures. Despite this crowdsourced effort, how-
ever, the database contained only 1,753 unique NPS structures at 
the beginning of June 2020.

The limited size of this dataset reflects the number of NPSs that 
have appeared on the illicit market and subsequently been detected 
by forensic laboratories. However, it is orders of magnitude smaller 
than the datasets that have typically been used to train genera-
tive models of chemical structures, which are generally thought to 
require training datasets comprising hundreds of thousands—if not 
millions—of examples27.

We hypothesized that this small training dataset could none-
theless provide a basis to learn a robust generative model of NPS 
chemical structures. We recently carried out a systematic analysis of 
deep generative models of molecules in the low-data regime28 and 
showed that it is possible to learn robust models from far smaller 
datasets than has been widely assumed. We also identified strategies 
that facilitate learning from a small number of examples. One of the 
most effective such strategies takes advantage of the fact that a single 
molecule can be represented by multiple simplified molecular-input 
line-entry system (SMILES) strings, depending on the order in 
which the atoms in the graph are traversed. This redundancy opens 
up an opportunity for data augmentation, by enumerating multiple 
non-canonical SMILES for each molecule in the training dataset 
(Fig. 1c)29. However, we also identified a risk of ‘over-augmentation’, 
in which excessive non-canonical SMILES enumeration actually 
degrades the performance of the trained model.

To empirically determine the optimal degree of data augmenta-
tion, we trained deep generative models on the HighResNPS data-
set after subjecting it to varying degrees of non-canonical SMILES 
enumeration. We also experimented with two different recurrent 
neural network (RNN)-based architectures, including gated recur-
rent units (GRUs) and long short-term memory networks (LSTMs). 
We evaluated model performance using five metrics that we had 
previously found to be robust indicators of model quality28. These 
metrics generally suggested that a high degree of SMILES enumera-
tion markedly improved model performance and that LSTM mod-
els slightly outperformed GRUs (Fig. 1d and Extended Data Fig. 
1a–c). Integrating all five metrics into a single consensus measure 
of model performance using principal component analysis (PCA)28 
confirmed the trends that were apparent from inspection of indi-
vidual metrics (Fig. 1e,f and Extended Data Fig. 1d). Based on these 
results, we selected an LSTM model, trained on a dataset in which 
100 non-canonical SMILES were enumerated for each unique mol-
ecule, for further analysis.

Generated molecules closely resemble known designer drugs. We 
next sought to characterize the molecules generated by our model 
in more detail. As a first step, we asked whether the structural 
and physicochemical properties of the generated molecules were 
similar to those of known NPSs. To address this question, we sam-
pled 500,000 SMILES strings from our trained model. Removing 
SMILES that were either syntactically invalid or corresponded to 
known NPSs yielded a total of 62,354 novel, generated molecules. 
We compared these generated molecules to the 1,753 known NPSs 
that comprised the training set.

We computed a series of chemical properties for each known 
NPS and generated molecule, including its atomic composition, 
the number of ring systems it contained, its molecular weight, its 
topological complexity31, its octanol–water partition coefficient32 
and measures of drug-likeness33, natural product-likeness34 and 
synthetic accessibility35. Strikingly, despite the limited amount of 
training data, we found that the generated molecules had prop-
erty distributions that were almost indistinguishable from those of 
known NPSs (Fig. 2a–e and Extended Data Fig. 2a–d).

To gain a more holistic perspective on the molecules generated 
by the trained model, we sought to visualize the chemical spaces 
occupied by known and generated NPSs. We embedded known 
NPSs and a random sample of generated molecules of equal size 
into two dimensions using Uniform Manifold Approximation and 

Nature Machine Intelligence | VOL 3 | November 2021 | 973–984 | www.nature.com/natmachintell974

http://www.nature.com/natmachintell


ArticlesNaTurE MacHinE InTElligEncE

Projection (UMAP)36, a nonlinear dimensionality reduction algo-
rithm. We then plotted the resulting two-dimensional embeddings, 
with either the known or generated NPSs overlaid on top of one 
another. These plots demonstrated that the generated molecules 
almost perfectly reproduced the chemical space of known NPSs, 
with very few regions of chemical space occupied exclusively by 
either known or generated drugs (Fig. 2f).

We also asked how the generated NPSs fit into the categories 
of designer drugs assigned by HighResNPS, which are based on 
those established by the European Monitoring Centre for Drugs 
and Drug Addiction (EMCDDA). Overall, we observed a close 
correspondence between the EMCDDA categorizations of known 
and generated NPSs (Fig. 2g and Extended Data Fig. 2e). Only two 
categories were generated at frequencies significantly different from 
the training set, with cannabinoids being modestly enriched in the 
generative model output and arylcyclohexylamines being moder-
ately depleted (odds ratio, P = 0.040 and 1.9 × 10−4, respectively; 
Extended Data Fig. 2f).

NPSs exert their psychoactive effects by acting at receptors in 
the brain, which they must cross the blood–brain barrier (BBB) 
to access. To validate the potential psychoactive properties of the 
generated NPSs, we used LightBBB37 to predict the likelihood that 
they would cross the BBB. As a baseline, we also used LightBBB to 
predict the BBB permeability of known NPSs. We found that 95.3% 
of known NPSs were predicted to cross the BBB, consistent with 
the estimated false-negative rate of ~7% for this tool37. Among the 
generated molecules, a very similar proportion (93.2%) were pre-
dicted to cross the BBB (Fig. 2h). This suggests that the generated 

molecules have the potential to access the same receptors in the 
brain at which known NPSs act.

Together, these results suggest that, with appropriate adjustments 
for the low-data regime, it is possible to learn a robust generative 
model of NPS chemical structures from only ~1,750 training exam-
ples. This model generated molecules with physicochemical prop-
erties that were nearly identical to those of known NPSs and which 
populated overlapping regions of chemical space. These results sup-
port the notion that a library of generated molecules could be used 
to search for previously unknown NPSs within MS data.

Sampling frequency defines a structural prior for the annotation 
of unknown NPSs. While inspecting the molecules generated by 
our model, we noticed that some molecules appeared repeatedly 
in the model output. To investigate this phenomenon further, we 
sampled a total of one billion SMILES strings from the generative 
model, and tabulated the frequency at which each unique chemi-
cal structure was found in this sample (Fig. 3a,b). After removing 
syntactically invalid SMILES strings and known NPSs, we identified 
a total of 8.9 million unique molecules within this sample. The vast 
majority of these molecules appeared just once, or at most a hand-
ful of times, in the model output. However, a long tail of molecules 
were repeatedly sampled tens or hundreds of thousands of times 
(Fig. 3c and Extended Data Fig. 3a).

We were surprised to observe that the model generated mol-
ecules at dramatically different frequencies, and sought to explain 
this unexpected finding. We hypothesized that the generative model 
had learned to implicitly evaluate the likelihood of novel NPSs, 
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Fig. 1 | A deep generative model of novel psychoactive substances. a, Chemical structures and canonical SMILES representations of two example designer 
drugs, methcathinone (top) and 2C-B (bottom). b, Top: schematic overview of the RNN-based generative model. A SMILES string is split into tokens, and 
the start-of-string token ('^') is prepended to the tokenized SMILES. The model is trained to predict the next token, given the sequence of tokens that has 
already appeared. Bottom: the generative model is trained on the SMILES representations of known designer drugs. SMILES strings are then stochastically 
sampled from the trained model by providing only the start-of-string token as input, enabling generation of novel candidate NPSs. c, Canonical SMILES and 
seven enumerated non-canonical SMILES for an example designer drug, benzylpiperazine. d, Proportion of valid SMILES strings generated by RNN-based 
models trained on the HighResNPS database after varying degrees of non-canonical SMILES enumeration. e, Fréchet ChemNet distances to the training set 
for RNN-based models trained on the HighResNPS database after varying degrees of non-canonical SMILES enumeration. f, PCA of top-performing metrics 
for molecules generated by RNN-based models trained on the HighResNPS database after varying degrees of non-canonical SMILES enumeration. g, PC1 
scores for GRU and LSTM models trained on the HighResNPS database after varying degrees of non-canonical SMILES enumeration.
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based on the structural properties of known designer drugs. In 
other words, we posited that molecules sampled more frequently by 
the model would exhibit a higher degree of structural similarity to 
known NPSs, and would be more likely to subsequently appear on 
the ‘grey market’.

To test this hypothesis, we assessed the structural similarity of 
generated molecules and known NPSs, using the Tanimoto coef-
ficient (Tc) as a quantitative measure of similarity38,39. We then 
compared the Tc between each generated molecule and its near-
est neighbour among the set of known NPSs, for molecules gener-
ated at progressively increasing frequencies by the trained model. 
Molecules sampled more frequently exhibited significantly greater 
similarity to an existing NPS (P < 1 × 10−15, Jonckheere–Terpstra 
test), supporting the hypothesis that the sampling frequency reflects 
the implicit likelihood of observing a novel NPS structure (Fig. 3d).

To further corroborate this notion, we computed a range of physi-
cochemical properties for molecules sampled at increasing frequen-
cies from the generative model. We then compared these properties 
to those of known NPSs. We found that molecules sampled more 
frequently from the generative model had a lower Fréchet ChemNet 
distance to the training set40 and better matched the distribution 
of Murcko scaffolds found in known NPSs41 (Fig. 3e,f). Moreover, 
frequently sampled molecules also better matched the molecular 
weights, partition coefficients, drug-likenesses and stereochemical 
complexities of known NPSs (Extended Data Fig. 3b–g).

Taken together, these findings demonstrate that novel molecules 
generated frequently by our model are more similar to known NPSs 
than those generated infrequently. In turn, this raises the possibility 
that the sampling frequency could be used to prioritize the most 
likely structures of novel NPSs.

Anticipating the structures of unidentified designer drugs. Our 
experiments established that frequently sampled molecules are more 
similar to known NPSs. This finding led us to ask whether these 
frequently sampled molecules are also more likely to subsequently 
appear on the grey market. In other words, we asked whether we 
could leverage the implicit likelihood learned by the generative 
model to anticipate the chemical structures of as yet unsynthesized 
drugs.

To test this possibility, we assembled a held-out set of 194 NPSs, 
which were identified by forensic laboratories and added to the 
HighResNPS database only after our training set was finalized. We 
then asked what proportion of these held-out NPSs were successfully 
anticipated by our model. A total of 176, or 90.7%, appeared at least 
once within our sample of one billion SMILES strings (Fig. 4a). The 
18 held-out molecules that were never sampled by the generative 
model exhibited significantly less structural similarity to any known 
NPS in the training set, as quantified by the Tc (P = 2.9 × 10−13; Fig. 
4b). This reflects an inherent limitation of our model: namely, it 
can only generate novel molecules that are structurally similar to 
known designer drugs. However, closer inspection revealed that 
some of these 18 molecules were not actually designer drugs at all. 
For example, some of the molecules in the held-out set included the 
dietary supplement citicoline, the antipsychotic clozapine and the 
alcohol-dependence medication nalmefene (Extended Data Fig. 4). 
After curating the held-out set to remove these questionable entries, 
the proportion of structures anticipated by our model climbed to 
93.1% (176/189).

Interestingly, although a handful of the held-out NPSs were 
sampled only once or twice from the model, the vast majority 
were among the relatively small subset of generated molecules that 
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appeared 50 or more times in our sample of one billion SMILES 
(Extended Data Fig. 5). This observation further supported the 
possibility that the sampling frequency could be used to prioritize 
candidate NPSs most likely to emerge on the grey market in the 
future. As one striking example, the single most frequently gener-
ated novel molecule, appearing 323,299 times within our sample, 
was the synthetic cannabinoid AB-FUBICA, which was added to 
the HighResNPS database in October 2020 (Fig. 4c).

Structure elucidation of unidentified NPSs from accurate mass 
measurements. Encouraged by these results, we asked whether we 
could leverage the sampling frequency to anticipate the most likely 
chemical structure for an unidentified NPS subjected to MS analy-
sis. When analysing a law enforcement seizure by MS, the first clue 
to the identity of the seized compound that investigators receive is 
its mass. We therefore devised an experiment to test the feasibility 
of elucidating the structure of a novel NPS from an accurate mass 
measurement alone. For each of the NPSs in the held-out set, we 
searched in our sample of one billion SMILES strings to identify all 
generated molecules matching the exact mass of the held-out NPS, 
allowing for a window of ±10 ppm to account for the accuracy of 
modern HR-MS instrumentation. We then sorted these matches 
by their sampling frequency in descending order and calculated 
the frequency with which the correct molecule was ranked first, or 
within the top three, top five or top ten candidates. This experiment 
allowed us to test the accuracy of structure elucidation on the basis 
of only an experimentally measured mass measurement, as might 
readily be obtained from a modern mass spectrometer. We dubbed 
this workflow the ‘structural prior’, on the basis that it provides a 

prior probability distribution over all possible chemical structures 
matching the accurate mass of an unidentified molecule.

Remarkably, using only an accurate mass as input, we found our 
structural prior could predict the chemical structure of the uniden-
tified molecule with perfect accuracy 33% of the time (Fig. 4d). 
Moreover, the correct structure was ranked among the top three 
candidates 48% of the time, and among the top 10 candidates 72% 
of the time. This performance is remarkable, given that only a single 
piece of information is provided to the model as a basis for the pre-
diction of complete chemical structures of entirely novel molecules.

We reasoned that in the cases where the structural prior failed 
to rank the correct molecule first, or even among the top 10 can-
didates, it would still be very helpful to forensic scientists if the top 
prediction was a closely related analogue. To evaluate whether the 
top-ranked molecule was at least structurally similar to the cor-
rect structure, we computed the Tanimoto coefficient between the 
candidates nominated by the structural prior and the unidentified 
NPSs. As a baseline, we also computed the Tanimoto coefficient 
for the molecules sampled less frequently by the generative model. 
As a second baseline, we queried the mass of the unidentified NPS 
against the PubChem database, which is commonly used as a refer-
ence for unidentified MS signals42.

Interestingly, we noted that molecules sampled infrequently from 
the generative model were more similar to the correct structure than 
isobaric molecules from PubChem (Fig. 4e). This observation prob-
ably reflects the fact that even infrequently sampled molecules pop-
ulate the chemical space of known designer drugs, unlike molecules 
sampled at random from PubChem. However, the molecules nomi-
nated by the structural prior were dramatically more similar to the 

U
M

AP
2

UMAP1

Aminoindanes
Arylalkylamines
Arylcyclohexylamines
Benzodiazepines
Cannabinoids
Cathinones
Indolalkylamines
Opioids
Phenethylamines
Piperazine derivates
Piperidines & pyrrolidines
Plants & extracts
Precursors
Unknown U

M
AP

2

UMAP1
0

5.5
log10 frequency

101

103

105

107

N
o.

 o
f u

ni
qu

e 
m

ol
ec

ul
es

101 103 105

Sampling frequency

0.2

0.4

0.6

0.8

N
ea

re
st

-n
ei

gh
bo

ur
 T

c

1 3 5 10 30 50
Sampling frequency

2

3

4

5

6

Fr
éc

he
t C

he
m

N
et

 d
is

ta
nc

e
1 3 5 10 30 50
Sampling frequency

0.50

0.55

0.60

0.65

0.70

Je
ns

en
−S

ha
nn

on
 d

is
ta

nc
e

1 3 5 10 30 50
Sampling frequency

a b

c d e f

Fig. 3 | Sampling frequency defines a structural prior over unseen molecules. a, UMAP visualization of known NPSs and a random sample of up to 5,000 
generated molecules at each sampling frequency in a sample of a billion SMILES strings. Known NPSs are coloured by their EMCDDA categorizations, 
with generated molecules in grey. b, As in a, but showing only generated molecules coloured by their sampling frequency. c, Distribution of sampling 
frequencies within a sample of one billion SMILES strings from the trained generative model. d, Tanimoto coefficients between generated molecules 
and their nearest neighbour in the set of known NPSs, for molecules generated with progressively increasing frequencies. e, Fréchet ChemNet distances 
between generated molecules and the set of known NPSs, for molecules generated with progressively increasing frequencies. f, Jensen–Shannon distance 
between the Murcko scaffold compositions of generated molecules and the set of known NPSs, for molecules generated with progressively increasing 
frequencies.

Nature Machine Intelligence | VOL 3 | November 2021 | 973–984 | www.nature.com/natmachintell 977

http://www.nature.com/natmachintell


Articles NaTurE MacHinE InTElligEncE

unidentified NPS than either baseline (Fig. 4e). This similarity was 
particularly apparent when inspecting the Tanimoto coefficient for 
only the single top-ranked molecules in more detail (P ≤ 1.9 × 10−55; 
Fig. 4f). These analyses indicate that, even when the structural prior 
does not perfectly annotate the structure of an unidentified NPS, it 
tends to at least prioritize molecules that are highly similar.

A limitation of the Tanimoto coefficient in evaluating chemical 
similarity is that its range of possible values scales with the sizes of 
the molecules being compared43. As a second, orthogonal measure 
of chemical similarity, we computed the Euclidean distance between 
continuous molecule embeddings derived from a neural machine 
translation task44. We reproduced our finding that the structural 
prior markedly outperformed both baselines when using continu-
ous embeddings to quantify chemical similarity (Extended Data 
Fig. 6a,b).

To illustrate the power of the structural prior, we focused on 
an illustrative example of a new designer drug, deoxymethoxet-
amine (DXME). DXME is a dissociative hallucinogen of the aryl-
cyclohexylamine class, which includes well-known drugs of abuse 
such as ketamine and phencyclidine (PCP). It appears to have first 
emerged on the illicit market in late 2020, and was added to the 
HighResNPS database in February 2021 after being identified in a 

law enforcement seizure by the Section of Forensic Chemistry in 
Denmark (Retskemisk Afdeling, RKA). At the time of writing, it had 
not been described in a peer-reviewed article, rendering this a rep-
resentative prospective application of the structural prior. Querying 
the structural prior with the exact mass of DXME (±10 ppm) 
returned a list of 11,479 candidate structures. This enormous num-
ber of candidates illustrates the difficulty of predicting a complete 
chemical structure from a mass alone. Yet, despite having never seen 
this molecule during training, the structure of DXME was correctly 
ranked as the single most frequent match, appearing 62,074 times 
in our sample of one billion SMILES (Fig. 5). Moreover, the second 
most frequently sampled compound, appearing 41,256 times, was 
a closely related isomer, differing only in the position of a methyl 
group on the aromatic ring. Interestingly, several other candidates 
ranked within the top 20 were arylcyclohexylamines structurally 
related to DXME, suggesting the model deemed it likely that the 
mass in question belonged to the arylcyclohexylamine category, 
despite the fact that these were generally underrepresented in the 
model output (Extended Data Fig. 3b). As a second example, we 
found that the structural prior correctly elucidated the chemical 
structure of ADB-HEXINACA, the most recent synthetic canna-
binoid to have emerged on the US market at the time of writing, 
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selecting the most likely structure from among a series of closely 
related analogues (Extended Data Fig. 7).

MS/MS enables high-confidence annotation of unidentified 
NPSs. Our experiments to this point have shown that the structural 
prior can generate remarkably accurate annotations of the structure 
of an unidentified NPS from an accurate mass measurement alone. 
However, accurate mass measurements are fundamentally limited in 
their ability to distinguish structural isomers with the same molec-
ular formula. The limitations of accurate mass measurements are 
especially apparent in cases where several analogues from the same 
medicinal chemistry series with identical chemical formulae could 
plausibly represent novel designer drugs. Such isomers can, how-
ever, be differentiated using MS/MS18. We therefore asked whether 
integrating MS/MS data into the predictions made by the structural 
prior could further improve the accuracy of structure elucidation.

To test this notion, we used CFM-ID45,46 to predict MS/MS 
spectra for all 8.9 million generated molecules. We then compared 
the accuracy of structure annotations assigned by three different 
approaches: (1) the structural prior alone, (2) CFM-ID alone or 
(3) the combination of the two. To combine CFM-ID predictions 
with the structural prior, we reweighted the scores assigned by 
CFM-ID according to the prior probabilities assigned by the gen-
erative model. We then evaluated the accuracy of each approach 
in our held-out dataset, restricting our analysis to the 79 NPSs 
in our held-out set for which MS/MS data had been deposited to 
HighResNPS. For all three methods, we considered all generated 
molecules within a ±10 ppm window as potential matches.

Integrating MS/MS data yielded substantially more accurate 
predictions than those made by the structural prior alone. The 
combined approach successfully elucidated the complete chemical 
structures of 40 unidentified NPSs (51%), as compared to 28 cor-
rectly elucidated by the generative model (35%) and only one (1%) 
by CFM-ID alone (Fig. 6a). Similar improvements in the top-k accu-
racy (that is, the number of times the correct structure was ranked 
within the top k candidates) were apparent for many values of k. For 
example, the combined approach ranked the correct chemical struc-
ture within the top three candidates 70% of the time, compared to 
54% for the generative model alone and 6% for CFM-ID alone (Fig. 
6b). The relatively poor performance of CFM-ID alone underscores 
the difficulty of de novo structure elucidation and emphasizes the 
contribution of the structural prior to the accuracy of our system.

An example of an NPS for which the automated elucidation of 
the complete chemical structure relied on the integration of MS/
MS data is the 5-hydroxyindole analogue of JWH-122, as shown in 
Fig. 6d. The structural prior selected a closely related analogue from 
among 2,599 generated molecules matching the exact mass, but 
with a methoxy group misplaced, yielding a Tanimoto coefficient of 
0.41. Incorporating the predicted mass spectra for all 2,599 possible 
matches into the structural prior rescued the correct structure.

Even when the correct molecule was not the top-ranked hit, 
integrating the MS/MS data yielded structural annotations that 
were more chemically similar to the unidentified NPS than those 
generated by the structural prior alone, as quantified either by the 
Tanimoto coefficient (Fig. 6c) or the Euclidean distance between 
continuous and data-driven descriptor (CDDD) embeddings 
(Extended Data Fig. 8a). For example, given the accurate mass of 
the 3,4-MDMA methylene homologue as input, the structural prior 
selected a substituted cathinone with relatively little resemblance to 
the ground truth (Extended Data Fig. 8b). However, after incorpo-
rating MS/MS data into the structural annotation, the top-ranked 
molecule was a closely related MDMA derivative.

To put the performance of our model in context, we compared 
DarkNPS to two additional baselines. First, we asked whether we 
could have achieved similar results by searching the held-out mol-
ecules against known NPSs. We used CFM-ID to predict MS/MS 
spectra for the 1,753 known NPSs that comprised our training set, 
then used these to annotate the held-out spectra (Extended Data Fig. 
9a–d). Querying the held-out spectra against known NPSs yielded 
a top-one accuracy of 0% by definition, but typically retrieved 
a reasonably similar molecule as the top hit (median Tc = 0.49). 
However, the top-ranked generated molecules were more structur-
ally similar to the held-out NPSs than the top-ranked known NPSs 
(P = 2.8 × 10−6, t-test), indicating that DarkNPS is able to prioritize 
novel chemical structures that are more similar to an unidentified 
NPS than those in the training set itself.

The ability of deep learning-based approaches to outperform 
simple baselines on molecule generation tasks has recently been 
called into question. Renz et al.47 developed a trivial baseline that 
inserts a carbon atom ('C') at random positions in the training set 
SMILES and showed that this model, which they call ‘AddCarbon’, 
was competitive with more complex models at several distribu-
tion learning tasks in the GuacaMol suite of benchmarks48. We 
therefore also compared our model to the AddCarbon baseline. 
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We enumerated all 34,538 AddCarbon derivatives of the 1,753 
known NPSs in our training set, and applied CFM-ID to predict 
their MS/MS spectra (Extended Data Fig. 9e–h). The accuracy of 
the AddCarbon model was non-zero, but substantially lower than 
that of DarkNPS (top-one accuracy, 6% versus 51%; top-three 
accuracy, 9% versus 70%). Moreover, the chemical similarity of the 
top-ranked AddCarbon molecules was significantly lower than the 
top-ranked DarkNPS hits (P = 1.7 × 10−6, t-test). These results estab-
lish that DarkNPS markedly outperforms a simple baseline that has 
nonetheless proven surprisingly competitive on other molecule 
generation tasks.

Collectively, these experiments demonstrate that integrating MS/
MS data into DarkNPS enables high-confidence structural annota-
tion, yielding a system that is capable of automatically elucidating 
complete chemical structures from MS data alone.

Discussion
The proliferation of unregulated substances marketed as legal alter-
natives to established drugs of abuse presents a major challenge to 
public health. However, the identification of designer drugs that 
have recently emerged on the illicit market is a low-throughput and 
labour-intensive endeavour. In this Article we describe a system 
capable of anticipating the chemical structures of the NPSs most 
likely to emerge on the illicit market in the future, as well as anno-
tating the most likely structure of an unidentified NPS using MS 
data. We prospectively validated our model in a held-out set of 194 
NPSs that were identified by forensic laboratories around the globe 
several months after our training set was finalized. This held-out 
set allowed us to test the ability of our model to generalize to NPSs 
that have just emerged on the illicit market. Using this held-out set, 
we have demonstrated that our method generates highly accurate 
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annotations of the structure of an unidentified NPS from an accu-
rate mass measurement alone, using the concept of the structural 
prior, and that these annotations are further improved by the inte-
gration of MS/MS data. Our final model was able to perform auto-
mated structure elucidation of complete chemical structures with 
an accuracy of over 50%, and ranking the correct structure among 
the top 10 candidates almost 90% of the time. Moreover, in cases 
where the model did not correctly identify the exact structure of 
the unknown NPS, it typically suggested a closely related analogue. 
This performance is remarkable given that de novo structure eluci-
dation is typically thought to require experimental techniques that 
are entirely orthogonal to MS, most notably NMR. Taken together, 
these results strongly support the generalizability of our model to 
NPSs outside the training set. Consequently, we expect that our 
method has the potential to dramatically accelerate the pace at 
which emerging designer drugs can be identified by forensic, toxi-
cological, police and customs laboratories and ultimately have a 
major impact on designer drug surveillance and law enforcement. 
Although we have focused here on the automated interpretation of 
MS data, we anticipate that our database of 8.9 million candidate 
NPS structures, ranked by their likelihood under the structural 
prior, may also find applications in the forensic analysis of emerging 
NPSs using alternative analytical techniques. Of particular note in 
this respect is the possibility of accelerating forensic analysis using 
NMR spectroscopy, especially in light of recent advances in the 
automated prediction of NMR spectra49–51.

Many of the challenges faced by investigators seeking to deter-
mine the structure of an unknown NPS are ubiquitous through-
out the field of analytical chemistry. To elucidate the structure of 
an unknown molecule from MS data, both human analysts and 
existing computational approaches use experimentally measured 
properties such as accurate masses, fragmentation patterns and iso-
topic distributions30. Current computational approaches to MS data 
make use of experimentally measured information such as exact 
masses, fragmentation patterns and isotopic distributions30. In this 
work, we posited that the chemical space of interest itself provides 
a highly informative prior that can be used to nominate the most 
likely structures matching an experimentally observed property. 
In other words, given the structures of known observed designer 
drugs as input, we have demonstrated that we can learn a statistical 
probability distribution over unobserved designer drug structures 
and define those that are more or less likely to be observed in the 
future. This represents a conceptually new approach to the inter-
pretation of MS data. We have shown that this paradigm is comple-
mentary to existing approaches for searching MS/MS data against a 
database of chemical structures. Moreover, we have demonstrated 
that this information is complementary to that leveraged by exist-
ing approaches for searching MS/MS data against a database of 
chemical structures. Indeed, we have found that our approach can 
dramatically improve the accuracy of chemical database searches. 
Accordingly, we envision that the concept of the structural prior 
has the potential to facilitate the interpretation of MS data across a 
number of different fields of study. For example, we anticipate that 
bespoke structural priors could also be developed for applications 
such as the identification of novel performance-enhancing drugs, 
the study of xenobiotic metabolism, the identification of environ-
mental pollutants or the discovery of natural products, given an 
appropriate set of training data. At the same time, the chemical 
diversity of the molecules under investigation in these fields may 
present challenges beyond those addressed here, in the relatively 
well-circumscribed chemical space of designer drugs. Future work 
will be required to definitively establish and quantify the utility of 
structural priors for other fields of study.

In rationalizing the excellent performance of the structural prior, 
we suggest that this performance reflects an understanding of the 
chemical space occupied by known designer drugs. The synthesis  

of these molecules proceeds through a relatively small number 
of synthetic routes, which in turn converge on a common set of 
chemical scaffolds. Individual agents are then derivatized from 
these scaffolds using a finite repertoire of medicinal-chemistry 
transformations. By learning the distribution of known designer 
drugs within chemical space, we conjecture that our model has 
developed an implicit understanding of both the chemical scaffolds 
of known designer drugs and the chemical transformations that are 
applied to produce novel agents. Importantly, this understanding 
seems to include which specific transformations are most likely to 
be applied by clandestine chemists, and at what sites in a molecule. 
For example, given the mass of the novel synthetic cannabinoid 
ADB-HEXINACA, the model is capable of not only suggesting that 
the molecule in question is likely to be a cannabinoid, but also what 
combination of substituents is most likely to decorate the core scaf-
fold (Extended Data Fig. 7).

Critical to the success of this effort was our ability to learn a 
robust generative model of chemical structures from a small num-
ber of examples. To achieve this, we relied heavily on strategies for 
learning robust generative models from limited training data that 
we identified in our recent benchmarking analysis28. In that study, 
we sought to systematically dissect the requirements for learn-
ing a robust generative model in the low-data regime by training 
more than 8,500 different language models on random samples of 
SMILES strings from four chemical databases. We systematically 
varied each aspect of model training, from data augmentation and 
molecule representation to model architecture and hyperparam-
eters. The structure of our experiments also allows us to bench-
mark the metrics used to evaluate generative models themselves 
and identify a subset of metrics that provide a sound foundation for 
model development. Here, we leveraged the insights developed in 
this study to train an excellent generative model from only ~1,700 
known NPSs. This dataset is orders of magnitude smaller than those 
that have conventionally been used to train generative models27. 
A number of factors likely underlie the surprisingly good perfor-
mance of our model from such a small amount of training data. 
Data augmentation by non-canonical SMILES enumeration had a 
dramatic impact on model performance, consistent with previous 
results28,52,53. Another factor that likely contributed to our success 
is that the chemical space of NPSs is relatively homogeneous. This 
notion is consistent with our finding that generative models are 
much more likely to succeed in low-data settings when the training 
set is less diverse28 and suggests it might be possible to learn gen-
erative models for many restricted chemical spaces of biomedical 
interest.

A limitation of our approach is that it requires us to draw a very 
large sample from the generative model to tabulate the frequency 
with which each unique molecule appears in the model output. This 
is due both to the redundancy of the SMILES format (that is, many 
different SMILES strings can correspond to the same molecule) and 
the fact that the model does not know in advance what the mass of 
a given SMILES string will be while generation is still in progress. 
We found that a sample size of one billion SMILES strings struck a 
reasonable balance between chemical space coverage and computa-
tional requirements and was sufficient to obtain a reliable estimate 
of the sampling frequency (Extended Data Fig. 10). However, future 
efforts could conceivably improve the computational efficiency by 
conditioning molecule generation on one or more experimentally 
observed properties.

Methods
Training dataset. We obtained a training dataset of 1,753 chemical structures 
corresponding to known NPSs, their metabolites and common drugs of abuse 
from HighResNPS (https://highresnps.forensic.ku.dk)15. HighResNPS is a free, 
online, crowdsourced database of NPS structures and accompanying HR-MS 
data, initiated and managed by researchers at the Section of Forensic Chemistry 
at the University of Copenhagen. Forensic toxicology and chemistry laboratories 
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from around the world submit data to HighResNPS when novel designer drugs 
are detected and analysed by a mass spectrometer. New compounds may also be 
added when they have been reported by drug monitoring agencies such as, but not 
limited to, the United Nations Office of Drugs and Crime (UNODC), EMCDDA 
and the Drug Enforcement Administration (DEA). Entries minimally include 
the unambiguous chemical structures of the detected molecules and may also 
include MS/MS data or diagnostic product ions derived from theoretical bond 
dissociations.

The training set was obtained from the HighResNPS database in June 2020. 
At that time, the total number of entries in the database corresponded to 2,065 
unique molecules. These entries have been contributed by 57 laboratories located 
in 21 different countries. Each molecule in the database has also been assigned to a 
class of designer drugs based on the EMCDDA categorizations. All 2,065 molecules 
were parsed by RDKit, after which charged moieties were neutralized, using 
code provided in the RDKit documentation, and the molecules were converted 
into their canonical SMILES forms with stereochemistry removed. After this 
preprocessing step, redundant SMILES representations (for example, stereoisomers 
or alternatively charged forms of the same molecule) were discarded, leaving a total 
of 1,761 unique canonical SMILES. We then removed a further eight molecules 
containing characters (the phosphorus symbol, P, and the token for a fifth ring 
atom, 5) that were each found in less than 0.05% of the 1,761 molecules, reasoning 
that it was unlikely the model would be able to learn how to use these tokens from 
such a small number of examples. Collectively, these preprocessing steps yielded a 
dataset of 1,753 canonical SMILES, which formed the basis for all further analysis.

Generative models. RNN-based models of SMILES strings were trained on 
canonical SMILES or non-canonical SMILES after varying degrees of data 
augmentation, using either LSTM or GRU architectures. The Python source code 
used to train the model was derived from our recent benchmarking analysis of 
generative models of molecules in the low-data regime28 (https://github.com/
skinnider/low-data-generative-models), which was itself adapted from the 
REINVENT package25,54 (http://github.com/MarcusOlivecrona/REINVENT). 
Briefly, each SMILES was converted into a sequence of tokens by splitting 
the SMILES string into its constituent characters, except for atomic symbols 
composed of two characters (Br, Cl) and environments within square brackets, 
such as [nH]. The vocabulary of the RNN consisted of all unique tokens detected 
in the training data, as well as start-of-string and end-of-string characters 
and a padding token. Enumeration of non-canonical SMILES was performed 
using the SmilesEnumerator class available from http://github.com/EBjerrum/
SMILES-enumeration. We experimented with varying degrees of non-canonical 
SMILES enumeration, assembling training sets in which between 1 and 500 
non-canonical SMILES strings were enumerated for each unique molecule in 
the training dataset. The final model was an LSTM trained on a dataset with an 
augmentation factor of 100×. The architecture of the RNNs consisted of three-layer 
GRU or LSTM models, with a hidden layer of 512 dimensions, an embedding layer 
of 128 dimensions and no dropout layers. Models were trained using the Adam 
optimizer with β1 = 0.9 and 0.999, with a batch size of 128 and a learning rate of 
0.001, using teacher forcing. Ten percent of the molecules in the training set were 
reserved as a validation set and used to perform early stopping with a patience of 
50,000 minibatches. A total of 500,000 SMILES strings were sampled from each 
trained model after completion of model training.

Model evaluation. To select an optimal RNN architecture and degree of SMILES 
enumeration, we evaluated the trained models using a set of five metrics that we 
had previously found to be robust indicators of the quality of generative models of 
molecules28. Each of these five metrics seeks to quantify the degree to which the 
generated molecules resemble the training set (in this case, known NPSs). The five 
metrics in question are as follows:
•	 The proportion of valid molecules generated by the model, where valid mol-

ecules are those that can be parsed by the RDKit (‘% valid’);
•	 The Fréchet ChemNet distance40 between the training and generated mol-

ecules (‘FCD’) (the PyTorch implementation available from http://github.com/
insilicomedicine/fcd_torch was used to calculate the FCD);

•	 The Jensen–Shannon distance between the distributions of Murcko scaffolds41 
of known NPSs and generated molecules;

•	 The Jensen–Shannon distance between the natural product-likeness score34 
distributions of known NPSs and generated molecules;

•	 The Jensen–Shannon distance between the distribution of the proportion of 
atoms in each molecule that were stereocentres in known NPSs and generated 
molecules.

The Murcko scaffolds, natural product-likeness and proportion of stereocentres 
were calculated using RDKit, and the Jensen–Shannon distance was calculated 
using SciPy.

In addition to considering each of these metrics individually, we also integrated 
them into a single measure of model performance using PCA to account for the 
covariance between metrics, as previously described28. PCA was on the centred and 
scaled matrix of model performance metrics, using the R function ‘princomp’, and 
the loadings of each model on the first principal component (PC1) were used for 
model evaluation.

Physicochemical properties. After selecting an LSTM-based generative model 
with an augmentation factor of 100× for further exploration, we sought to 
characterize the molecules sampled from the trained model in greater detail. To 
this end, we computed a series of physicochemical or structural properties for 
each generated molecule. A sample of 500,000 SMILES strings was drawn from the 
trained model, and these SMILES were parsed using RDKit to remove syntactically 
invalid strings or molecules that were found in the training set. We then used 
RDKit to compute the natural product-likeness and proportion of stereocentres 
for each generated molecule, both as described above, as well as six additional 
properties: (1) the molecular weight; (2) the calculated octanol–water partition 
coefficient32; (3) the topological complexity31; (4) the synthetic accessibility score35; 
(5) the quantitative estimate of drug-likeness (QED) score33; (6) the proportion 
of carbons in the molecule that were sp3-hybridized. These calculations were then 
repeated for the known NPSs in the training set to provide a basis for comparison.

Chemical space analysis. To obtain a more holistic perspective on the chemical 
spaces occupied by known NPSs and the generated molecules, we used a previously 
described pipeline to visualize both sets of molecules within a two-dimensional 
space28. Briefly, we computed a continuous, 512-dimensional representation of 
each molecule using the CDDD package44 (available from http://github.com/
jrwnter/cddd). We then sampled CDDD descriptors for a subset of 1,753 generated 
molecules, to match the number of NPSs in the training set, and embedded both 
sets of descriptors into two dimensions with UMAP36, using the implementation 
provided in the R package ‘uwot’ and the following parameters: n_neighbors = 20, 
alpha = 2 and beta = 1.

EMCDDA drug categorizations. To place the generated molecules into the 
context of the NPS categorizations established by the EMCDDA, we assigned 
each generated molecule to the category of its nearest neighbour among known 
NPSs. Briefly, we computed extended connectivity fingerprints55 with a diameter 
of 3 (ECFP6) and a length of 1,024 bits for each known and generated molecule. 
The ECFP6 fingerprint was selected on the basis of its excellent performance 
in benchmarks of chemical similarity searches and ligand-based virtual 
screening39,56,57. Each generated molecule was then compared to each known 
NPS in the training set, using the Tanimoto coefficient to quantify the similarity 
between their chemical fingerprints, then the generated molecule was assigned 
the EMCDDA category of the known NPS with the single highest Tanimoto 
coefficient. EMCDDA categories that were significantly enriched or depleted 
among the generated molecules were identified with a z-test of the log-odds ratio.

BBB permeability. LightBBB37 was used to predict the BBB permeability of the 
generated molecules, using the prediction server available at http://ssbio.cau.ac.kr/
software/BBB. As a baseline, we also applied LightBBB to the set of known NPSs.

Structural prior. To investigate the relationship between sampling frequency 
and the chemical properties of the generated molecules, we drew a sample of one 
billion SMILES strings from the trained model. After removing invalid SMILES 
and known NPSs, we obtained a set of 8,928,701 unique molecules that represented 
candidate novel NPSs, each of which was sampled between 1 and 323,299 times. 
To visualize the complete set of generated NPSs, we drew a random sample of 
at most 5,000 molecules per sampling frequency. We then embedded these into 
two dimensions alongside the training dataset of known NPSs using UMAP, as 
described above and with identical parameters. The nearest-neighbour Tanimoto 
coefficient between generated molecules and known NPSs was also calculated 
as described above for the assignment of EMCDDA drug categories. Finally, 
we computed the same eight physicochemical parameters described above for 
molecules sampled between 1 and 50 times, then computed the similarity of the 
property distributions for known NPSs and generated molecules using the Jensen–
Shannon distance.

Model validation in a held-out set. To test the performance of our generative 
model on a held-out set of NPS structures, we assembled a database of 194 unique 
chemical structures that were added to the HighResNPS database between October 
2020 and April 2021. These molecules comprised both previously described NPSs 
that had never been submitted to HighResNPS and novel NPSs that had only 
emerged on the illicit market over the timeframe in question. These structures 
were preprocessed in the same manner as the training set using RDKit. We then 
used this held-out set to evaluate several aspects of model performance. Initially, 
we asked what proportion of held-out structures appeared at least once within 
the sample of one billion SMILES strings drawn from the generative model. 
We compared the chemical similarity to a known NPS (that is, we calculated 
nearest-neighbour Tanimoto coefficients, as described above) for held-out 
structures that were generated at least once by the model to those that were never 
generated.

We also investigated whether the sampling frequency of the generated 
molecules could be used to automatically annotate the most likely structure of an 
unidentified NPS whose exact mass had been determined using MS. To this end, 
for each held-out structure in turn, we identified all generated molecules matching 
the exact mass of the held-out structure within a mass window of ±10 ppm, and 
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ranked them in descending order by their sampling frequency. We then quantified 
the frequency with which the held-out structure was correctly identified as the 
single top-ranked structure, or else appeared among the top three, top five or top 
10 structures ranked by sampling frequency.

Finally, in cases where the single most frequently sampled molecule was not 
a perfect match to the structure of the held-out NPS, we reasoned that generating 
a close structural analogue would nevertheless provide highly useful information 
to investigators. We therefore computed the chemical similarity between the 
top-ranked generated molecules and the held-out NPS using the Tanimoto 
coefficient, as described above. As a baseline, we also ranked the list of generated 
molecules by their sampling frequency in ascending order (that is, we selected the 
least frequently sampled molecules from the generative model output) or obtained 
a set of matching molecules at random from PubChem.

Integration with MS/MS. In practice, investigators would generally have access 
not just to an accurate mass measurement for an unidentified NPS, but also to its 
MS/MS spectrum. A large body of work has shown that MS/MS spectra can be 
queried against databases of known chemical structures, even if the structures in 
these databases are not themselves associated with MS/MS data58. Accordingly, 
we posited that incorporating MS/MS data into DarkNPS would further improve 
the accuracy of structure elucidation. To test this possibility, we applied CFM-ID 
(version 4.0.8) to predict MS/MS spectra for all 8.9 million unique molecules that 
appeared within our sample of one billion generated SMILES strings, using an 
ionization energy of 20 eV. Of these 8.9 million unique molecules, CFM-ID was 
unable to predict an MS/MS spectrum for ~400,000, which were assigned a score of 
zero. Each NPS in our held-out set was then compared to all generated molecules 
matching its exact mass (±10 ppm), using the dot product to quantify the similarity 
of predicted and observed spectra. This framework allowed us to perform an 
MS/MS-based chemical structure search for novel molecules not present in any 
chemical structure database, at a scale of millions of candidates.

To integrate the spectral similarity scores assigned by CFM-ID with the 
generative model, we exploited the probabilistic interpretation of the structural 
prior. Specifically, we conjectured that the relative frequency at which a given 
molecule was sampled by the generative model could be interpreted as the prior 
probability that the molecule in question accounted for the observed MS signal. 
Accordingly, we weighted the CFM-ID score according to the relative frequency 
with which each potential matching molecule was sampled by the generative 
model, considering only the subset of molecules matching the exact mass of the 
unidentified NPS. We then compared this weighted spectral similarity score to the 
rankings assigned by CFM-ID alone or by the structural prior alone. The three 
methods were evaluated within the subset of held-out NPSs for which MS/MS 
spectra had been deposited to HighResNPS, comprising 79 of the 189 molecules in 
the held-out set. The Tanimoto coefficient and Euclidean distance between CDDD 
embeddings were calculated for the top-ranked molecule nominated by each 
method as described above.

Additional baselines. To place the performance of our model in context, we 
compared it to two additional baselines. First, we used CFM-ID to predict MS/
MS spectra for all 1,753 known NPSs in the training set, using identical settings to 
those applied to the generated molecules. We then searched these predicted spectra 
against the 79 MS/MS spectra in our held-out set. The Tanimoto coefficients and 
Euclidean distances between CDDD embeddings for the top-ranked molecules 
identified by searching the training set were computed as described above, omitting 
30 of the 79 held-out spectra (38%) for which no molecules with matching masses 
were present in the training set.

Second, we compared our method to the AddCarbon baseline proposed 
by Renz and colleagues47. This model inserts a carbon atom into a random 
position within the SMILES representation of a molecule from the training 
set. If the insertion of the carbon atom produces a valid SMILES string and the 
corresponding molecule is not itself in the training set, then the modified SMILES 
string is retained. Surprisingly, this trivial baseline was found to outperform 
more complex approaches to molecule generation on several of the distribution 
learning tasks proposed in the GuacaMol package48. We adapted the Python 
source code available from https://github.com/ml-jku/mgenerators-failure-modes 
to exhaustively enumerate all possible ‘AddCarbon’ derivatives of the 1,753 
known NPSs in our training set. Invalid SMILES were removed, the remaining 
SMILES were converted to their canonical forms, and molecules that were also 
in the training set were removed, producing a set of 34,358 unique molecules. 
CFM-ID was then applied to predict the MS/MS spectra for all of the ‘AddCarbon’ 
molecules, and the predicted spectra were used to annotate the held-out spectra as 
described above.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
Owing to the sensitivity of the data and the potential for misuse, HighResNPS and 
the databases of generated molecules and MS/MS spectra described here are not 
available to the public for unrestricted download. However, the data have been 

uploaded to the NPS Data Hub59 (https://nps-datahub.com/) and will be made 
available to all qualified researchers in the field upon request. A demonstration 
dataset of 2,000 SMILES strings for drug-like small molecules sampled at 
random from the ChEMBL database is provided at http://github.com/skinnider/
NPS-generation to demonstrate the functionality of the code.

Code availability
Code used to train and evaluate chemical language models is available from 
GitHub at http://github.com/skinnider/NPS-generation (https://doi.org/10.5281/
zenodo.5136669).
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Extended Data Fig. 1 | Model selection and hyperparameter optimization. a, Jensen-Shannon distance between the distribution of Murcko scaffolds 
in the training set and generated molecules, for recurrent neural network-based models trained on the HighResNPS database after varying degrees of 
non-canonical SMILES enumeration. b, Jensen-Shannon distance between the natural product-likeness scores of the training set and generated molecules, 
for recurrent neural network-based models trained on the HighResNPS database after varying degrees of non-canonical SMILES enumeration. 
 c, Jensen-Shannon distance between the proportion of stereocenters in the training set and generated molecules, for recurrent neural network-based 
models trained on the HighResNPS database after varying degrees of non-canonical SMILES enumeration. d, Factor loadings onto the first principal 
component in a principal component analysis of recurrent neural network-based models trained on the HighResNPS database after varying degrees of 
non-canonical SMILES enumeration.
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Extended Data Fig. 2 | Physicochemical properties and EMCDDA drug categorizations of generated molecules. a, Calculated octanol-water 
partition coefficients (LogP) of known NPSs and generated molecules. b, Topological complexities of known NPSs and generated molecules. c, Natural 
product-likeness scores of known NPSs and generated molecules. d, Synthetic accessibility scores of known NPSs and generated molecules. e, UMAP 
visualization of known NPSs and an equal number of generated molecules sampled at random from the trained generative model, with the known NPSs 
colored by their EMCDDA drug categorizations. f, Log-odds ratios of EMCDDA drug category frequencies among generated molecules, as compared to 
the training set. *, p < 0.05; ***, p < 0.001.
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Extended Data Fig. 3 | Sampling frequencies of known and generated molecules. a, Distribution of sampling frequencies within a sample of 1 
billion SMILES strings from the trained generative model, with known NPSs from the training set shown in red. b, Jensen-Shannon distance between 
the molecular weights of generated molecules and the set of known NPSs, for molecules generated with progressively increasing frequencies. c, 
Jensen-Shannon distance between the quantitative estimate of drug-likeness (QED) score of generated molecules and the set of known NPSs, for 
molecules generated with progressively increasing frequencies. d, Jensen-Shannon distance between the proportion of carbons that are sp3-hybridized 
in generated molecules and the set of known NPSs, for molecules generated with progressively increasing frequencies. e, Jensen-Shannon distance 
between the partition coefficients of generated molecules and the set of known NPSs, for molecules generated with progressively increasing frequencies. 
f, Jensen-Shannon distance between the topological complexities of generated molecules and the set of known NPSs, for molecules generated with 
progressively increasing frequencies. g, Jensen-Shannon distance between the natural product-likeness scores of generated molecules and the set of 
known NPSs, for molecules generated with progressively increasing frequencies. h, Jensen-Shannon distance between the synthetic accessibility scores of 
generated molecules and the set of known NPSs, for molecules generated with progressively increasing frequencies. i, Jensen-Shannon distance between 
the proportion of stereocenters in generated molecules and the set of known NPSs, for molecules generated with progressively increasing frequencies.
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Extended Data Fig. 4 | Examples of molecules from the held-out set that were not generated by DarkNPS. Chemical structures of an illustrative subset of 
the 18 molecules in the held-out set that were never produced by the generative model in a sample of 1 billion SMILES strings, and their nearest neighbors 
among structures that were generated by the model. Many of these molecules either are not designer drugs at all (for example, clozapine, citicoline, 
nalmefene, 2,2-dibromo-1-phenylhexan-2-one), or had a very closely related molecule appear in the model output.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


ArticlesNaTurE MacHinE InTElligEncE ArticlesNaTurE MacHinE InTElligEncE

Extended Data Fig. 5 | Examples of molecules from the held-out set that were correctly anticipated by DarkNPS. a, Frequency with which each of the 
194 molecules in the held-out set were sampled from the generative model. b, Chemical structures, left, and sampling frequencies, right, for an illustrative 
subset of molecules in the held-out set that were correctly anticipated by the generated molecule. The molecules were selected from across the spectrum 
of sampling frequency in order to illustrate some of the major chemotypes captured by the generative model.
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Extended Data Fig. 6 | Benchmarking the structural prior using continuous molecular embeddings. a, Median Euclidean distance between CDDD 
embeddings of held-out NPSs and generated molecules matching their exact masses ( ± 10 ppm), arranged in descending order by sampling frequency 
(“most frequent”), ascending order by sampling frequency (“least frequent”), or a random sample of molecules with matching exact masses from 
PubChem. Error bars show the interquartile range. b, Distribution of Euclidean distances between the CDDD embeddings of held-out NPSs and generated 
molecules matching their exact masses ( ± 10 ppm), taking either the single most frequently sampled generated molecule, the single least frequently 
sampled generated molecule, or a random molecule with a matching exact mass from PubChem.
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Extended Data Fig. 7 | Application of the structural prior to the synthetic cannabinoid ADB-HEXINACA. Left, the chemical structure, molecular 
formula, and exact mass of ADB-HEXINACA. Middle, sampling frequencies of the 20 most frequently sampled molecules matching the exact mass of 
ADB-HEXINACA ( ± a 10 ppm window). An illustrative subset of the generated molecules, highlighted in red, are shown on the bottom.
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Extended Data Fig. 8 | Improved chemical similarity of automatically elucidated structures after MS/MS data integration. a, Euclidean distances 
between CDDD embeddings for molecules in the held-out set of unidentified NPSs and the top-ranked structures suggested by CFM-ID alone, the 
structural prior alone, or the combination of the two. b, Improvements in automated structure elucidation of an unidentified NPS using tandem mass 
spectrometry. Left, the chemical structure of 3,4-MDMA methylene homologue, created by inserting a methylene spacer between the α-carbon and amine 
group in MDMA. Middle, the top-ranked molecule suggested by the structural prior and mirror plot comparing the observed tandem mass spectrum of 
3,4-MDMA methylene homologue with the tandem mass spectrum predicted by CFM-ID. Right, the top-ranked molecule after integrating the structural 
prior with MS/MS evidence (top) and mirror plot comparing the observed and predicted tandem mass spectra.
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Extended Data Fig. 9 | Evaluation of DarkNPS against two additional baselines. a–d, Comparison of DarkNPS to chemical database search against 
known NPSs from the training set. a, Top-1 accuracy with which the complete chemical structures of unidentified NPSs in the held-out set were correctly 
elucidated by the combination of the structural prior and CFM-ID, or chemical database search against the 1,753 known NPSs in the training set. 
Searching against the disjoint training set yields a top-1 accuracy of 0%, by definition. b, Top-k accuracy curve for structure elucidation of unidentified 
NPSs in the held-out set by the combination of the structural prior and CFM-ID, or chemical database search against the 1,753 known NPSs in the training 
set. Searching against the disjoint training set yields a top-1 accuracy of 0%, by definition. c, Tanimoto coefficients between the held-out set and the 
top-ranked structures suggested by the combination of the structural prior and CFM-ID, or chemical database search against the 1,753 known NPSs in 
the training set. Results are not shown for 30 held-out molecules whose masses did not match any molecule in the training set. d, As in c, but showing 
the Euclidean distances between CDDD embeddings. Results are not shown for 30 held-out molecules whose masses did not match any molecule in the 
training set. e–h, Comparison of DarkNPS to the AddCarbon model. e, Top-1 accuracy with which the complete chemical structures of unidentified NPSs in 
the held-out set were correctly elucidated by the combination of the structural prior and CFM-ID, or chemical database search against 34,358 molecules 
generated by the AddCarbon baseline. f, Top-k accuracy curve for structure elucidation of unidentified NPSs in the held-out set by the combination of 
the structural prior and CFM-ID, or chemical database search against 34,358 molecules generated by the AddCarbon baseline. g, Tanimoto coefficients 
between the held-out set and the top-ranked structures suggested by the combination of the structural prior and CFM-ID, or chemical database search 
against 34,358 molecules generated by the AddCarbon baseline. Results are not shown for 38 held-out molecules whose masses did not match any 
molecule generated by the AddCarbon model. h, As in g, but showing the Euclidean distances between CDDD embeddings. Results are not shown for 38 
held-out molecules whose masses did not match any molecule generated by the AddCarbon model.
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Extended Data Fig. 10 | Robustness of the structural prior to sample size. a, Correlation between molecular sampling frequency in the original sample 
of 1 billion SMILES strings and a second sample of 1 billion SMILES strings. Inset text shows the Pearson correlation. b, Proportion of NPSs in the held-out 
set that were generated after downsampling the original sample of 1 billion SMILES strings to between 1,000 and 300 million SMILES. Only marginal 
improvement is observed after approximately 100 million SMILES. c, Top-k accuracy of the structural prior in the held-out set after downsampling the 
original sample of 1 billion SMILES strings to between 1,000 and 300 million SMILES. Only marginal improvement is observed after approximately 100 
million SMILES.
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